Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.05.31.494147

RESUMEN

Platelet homeostasis is essential for vascular integrity and immune defense. While the process of platelet formation by fragmenting megakaryocytes (thrombopoiesis) has been extensively studied, the cellular and molecular mechanisms required to constantly replenish the pool of megakaryocytes by their progenitor cells (megakaryopoiesis) remains unclear. Here we use intravital 2 photon microscopy to track individual megakaryopoiesis over days. We identify plasmacytoid dendritic cells (pDCs) as crucial bone marrow niche cells that regulate megakaryopoiesis. pDCs monitor the bone marrow for platelet-producing megakaryocytes and deliver IFN-a to the megakaryocytic niche to trigger local on-demand proliferation of megakaryocyte progenitors. This fine-tuned coordination between thrombopoiesis and megakaryopoiesis is crucial for megakaryocyte and platelet homeostasis in steady state and stress. However, uncontrolled pDC function within the megakaryocytic niche is detrimental. Accordingly, we show that pDCs activated by SARS-CoV2 drive inappropriate megakaryopoiesis associated with thrombotic complications. Together, we uncover a hitherto unknown megakaryocytic bone marrow niche maintained by the constitutive delivery of pDC-derived IFN-a.


Asunto(s)
Trombosis
2.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.06.29.450356

RESUMEN

Vaccines against SARS-CoV-2 are based on a range of novel vaccine platforms, with adenovirus-based approaches (like ChAdOx1 nCov-19) being one of them. Recently a rare and novel complication of SARS-CoV-2 targeted adenovirus vaccines has emerged: thrombosis with thrombocytopenia syndrome (TTS). TTS is characterized by low platelet counts, clot formation at unusual anatomic sites and platelet-activating PF4-polyanion antibodies reminiscent of heparin-induced thrombocytopenia. Here, we employ in vitro and in vivo models to characterize the possible mechanisms of this platelet-targeted autoimmunity. We show that intravenous but not intramuscular injection of ChAdOx1 nCov-19 triggers platelet-adenovirus aggregate formation and platelet activation. After intravenous injection, these aggregates are phagocytosed by macrophages in the spleen and platelet remnants are found in the marginal zone and follicles. This is followed by a pronounced B-cell response with the emergence of circulating antibodies binding to platelets. Our work contributes to the understanding of TTS and highlights accidental intravenous injection as potential mechanism for post-vaccination TTS. Hence, safe intramuscular injection, with aspiration prior to injection, could be a potential preventive measure when administering adenovirus-based vaccines.


Asunto(s)
Trombocitopenia , Trombosis
3.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.05.26.445809

RESUMEN

Disease manifestations in COVID-19 range from mild to severe illness associated with a dysregulated innate immune response. Alterations in function and regeneration of dendritic cells (DC) and monocytes may contribute to immunopathology and influence adaptive immune responses in COVID-19 patients. We analyzed circulating DC and monocyte subsets in 65 hospitalized COVID-19 patients with mild/moderate or severe disease from acute disease to recovery and in healthy controls. Persisting reduction of all DC subpopulations was accompanied by an expansion of proliferating Lineage- HLADR+ cells lacking DC markers. Increased frequency of the recently discovered CD163+ CD14+ DC3 subpopulation in patients with more severe disease was associated with systemic inflammation, activated T follicular helper cells, and antibody-secreting cells. Persistent downregulation of CD86 and upregulation of PD-L1 in conventional DC (cDC2 and DC3) and classical monocytes associated with a reduced capacity to stimulate naive CD4+ T cells correlated with disease severity. Long-lasting depletion and functional impairment of DCs and monocytes may have consequences for susceptibility to secondary infections and therapy of COVID-19 patients.


Asunto(s)
Enfermedad Aguda , COVID-19 , Inflamación
4.
ssrn; 2021.
Preprint en Inglés | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3787894

RESUMEN

The immune system of most SARS-CoV-2 infected individuals limits viral spread to the upper airways without pulmonary involvement. This prevents the development of pneumonic COVID-19. However, the protective immunological responses causative of successful viral containment in the upper airways remain unclear. Here, we combine longitudinal single-cell RNA sequencing, proteomic profiling, multidimensional flow cytometry, RNA-Seq of FACS-sorted leukocyte subsets and multiplex plasma interferon profiling to uncover temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients.We compare host responses in a high-risk patient population infected with SARS-CoV-2 but without pulmonary involvement to patients with COVID-19 pneumonia. Our data reveal a distinct immunological signature of successful viral containment, characterized by an early prominent interferon stimulated gene (ISG) upregulation across immune cell subsets. In addition, reduced cytotoxic potential of Natural Killer (NK) and T cells, as well as a monocyte phenotype with immune-modulatory potential are hallmarks of protective immunity. Temporal resolution across disease trajectories highlights ISG upregulation as particularly prominent early in the disease and confirms increased expression also in comparison to healthy controls.We validate this distinct temporal ISG signature by in-depth RNA-seq of FACS-sorted leukocyte subsets in a large prospective ambulatory SARS-CoV-2 infected cohort confirming early and robust ISG upregulation particularly in monocytes and T cells. In vitro experiments show that Stimulator of Interferon Genes (STING) agonist treatment of PBMCs recapitulates the identified protective immunological signature and might therefore offer a novel therapeutic approach in early disease, without being affected by previously described anti-interferon antibodies. In conclusion, our data demonstrate a protective ISG phenotype in patients with successful containment of SARS-CoV-2 infection without progression to COVID-19. This early protective interferon response might be exploited as a therapeutic approach and for disease course prediction.Funding: This study was supported by the Deutsche Herzstiftung e.V., Frankfurt a.M. [LN],Deutsche Forschungsgemeinschaft (DFG) SFB 914 (S.M. [B02 and Z01], K.S. [B02]), the DFG SFB 1123 (S.M. [B06], K.S. [A07]), M.J and R.Z [Z02]), the DFG FOR 2033 (S.M.), the DGF SFB1243 (W.E., L.E.W. [A14], the DGF EN 1093/2-1 (W.E., A.J.), the German Centre for Cardiovascular Research (DZHK) (Clinician Scientist Programme [L.N.], MHA 1.4VD [S.M.]), DZIF MD student programme (TI 07.003_Deák [F.D.]), FP7 program (project 260309, PRESTIGE [S.M.]), FöFoLe project 1015/1009 (L.N.), and the DFG Clinician Scientist Programme PRIME (413635475, K.P., R.K.). The work was also supported by the European Research Council (ERC 2018-ADG “IMMUNOTHROMBOSIS” [S.M.] and ERC- “T-MEMORE” [K.S.])The CORKUM cohort study was supported by LMUexcellent, funded by the Federal Ministry of Education and Research (BMBF) and the Free State of Bavaria under the Excellence Strategy of the Federal Government and the Länder.The Koco19-Immu Study is funded by Bavarian State Ministry of Science and the Arts, University Hospital, LMU Munich, Helmholtz Centre Munich, University of Bonn, University of Bielefeld, German Ministry for Education and Research (Project No.: 01KI20271).Conflict of Interest: The authors declare no conflict of interest.Ethical Approval: In accordance with the Declaration of Helsinki, and with the approval of the Ethics Committee of Ludwig-Maximilian University Munich, informed consent of the patients or their guardians was obtained. COVID-19 patients are part of the COVID-19 Registry of the LMU University Hospital Munich (CORKUM, WHO trial ID DRKS00021225). Pseudonymizeddata was used for analysis, the CORKUM and KocoImmu studies were approved by the ethics committee of LMUMunich (No: 20-245 & No: 20-371 respectively).


Asunto(s)
COVID-19 , Neumonía
5.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.02.03.429351

RESUMEN

The immune system of most SARS-CoV-2 infected individuals limits viral spread to the upper airways without pulmonary involvement. This prevents the development of pneumonic COVID-19. However, the protective immunological responses causative of successful viral containment in the upper airways remain unclear. Here, we combine longitudinal single-cell RNA sequencing, proteomic profiling, multidimensional flow cytometry, RNA-Seq of FACS-sorted leukocyte subsets and multiplex plasma interferon profiling to uncover temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients. We compare host responses in a high-risk patient population infected with SARS-CoV-2 but without pulmonary involvement to patients with COVID-19 pneumonia. Our data reveal a distinct immunological signature of successful viral containment, characterized by an early prominent interferon stimulated gene (ISG) upregulation across immune cell subsets. In addition, reduced cytotoxic potential of Natural Killer (NK) and T cells, as well as a monocyte phenotype with immune-modulatory potential are hallmarks of protective immunity. Temporal resolution across disease trajectories highlights ISG upregulation as particularly prominent early in the disease and confirms increased expression also in comparison to healthy controls. We validate this distinct temporal ISG signature by in-depth RNA-seq of FACS-sorted leukocyte subsets in a large prospective ambulatory SARS-CoV-2 infected cohort confirming early and robust ISG upregulation particularly in monocytes and T cells. In conclusion, our data demonstrate a protective ISG phenotype in patients with successful containment of SARS-CoV-2 infection without progression to COVID-19. This early protective interferon response might be exploited as a therapeutic approach and for disease course prediction.


Asunto(s)
COVID-19 , Neumonía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA